The realization space is [1 1 0 x1^2 - 2*x1 + 1 0 1 1 0 x1^4 - 3*x1^3 + 4*x1^2 - 3*x1 + 1 1 x1 - 1] [1 0 1 -x1^2 0 1 0 x1 -x1^4 + x1^3 - x1^2 x1 x1^2] [0 0 0 0 1 1 1 x1 - 1 -x1^4 + 3*x1^3 - 3*x1^2 + x1 x1 x1^2 - x1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (3*x1^10 - 14*x1^9 + 32*x1^8 - 47*x1^7 + 48*x1^6 - 35*x1^5 + 18*x1^4 - 6*x1^3 + x1^2) avoiding the zero loci of the polynomials RingElem[x1, x1 - 1, 2*x1^2 - 2*x1 + 1, x1^2 - x1 + 1, x1^3 - x1 + 1, x1^3 - 3*x1^2 + 2*x1 - 1, 2*x1 - 1, x1^4 - 2*x1^3 + 4*x1^2 - 3*x1 + 1, 3*x1^4 - 7*x1^3 + 8*x1^2 - 4*x1 + 1]